Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.800
Filtrar
1.
PLoS One ; 19(3): e0299687, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38512973

RESUMO

Phytotherapy is an attractive strategy to treat inflammatory bowel disease (IBD) that could be especially useful in developing countries. We previously demonstrated the intestinal anti-inflammatory effect of the total ethereal extract from the Physalis peruviana (Cape gooseberry) calyces in TNBS-induced colitis. This work investigates the therapeutic potential of Peruviose A and B, two sucrose esters that constitute the major metabolites of its calyces. The effect of the Peruvioses A and B mixture on TNBS-induced colitis was studied after 3 (preventive) and 15-days (therapy set-up) of colitis induction in rats. Colonic inflammation was assessed by measuring macroscopic/histologic damage, MPO activity, and biochemical changes. Additionally, LPS-stimulated RAW 264.7 macrophages were treated with test compounds to determine the effect on cytokine imbalance in these cells. Peruvioses mixture ameliorated TNBS-induced colitis in acute (preventive) or established (therapeutic) settings. Although 3-day treatment with compounds did not produce a potent effect, it was sufficient to significantly reduce the extent/severity of tissue damage and the microscopic disturbances. Beneficial effects in the therapy set-up were substantially higher and involved the inhibition of pro-inflammatory enzymes (iNOS, COX-2), cytokines (TNF-α, IL-1ß, and IL-6), as well as epithelial regeneration with restoration of goblet cells numbers and expression of MUC-2 and TFF-3. Consistently, LPS-induced RAW 264.7 cells produced less NO, PGE2, TNF-α, IL-6, and MCP-1. These effects might be related to the inhibition of the NF-κB signaling pathway. Our results suggest that sucrose esters from P. peruviana calyces, non-edible waste from fruit production, might be useful as an alternative IBD treatment.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Physalis , Ribes , Ratos , Animais , Fator de Necrose Tumoral alfa/metabolismo , Ésteres/metabolismo , Sacarose/metabolismo , Interleucina-6/metabolismo , Lipopolissacarídeos/farmacologia , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/metabolismo , Citocinas/metabolismo , Colo/patologia , Doenças Inflamatórias Intestinais/patologia , Ácido Trinitrobenzenossulfônico/toxicidade
2.
Balkan Med J ; 41(1): 30-37, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38173174

RESUMO

Background: The inflammatory bowel diseases (IBD) are significantly influenced by apoptosis and endoplasmic reticulum (ER) stress. Aims: To investigate the effects of quercetin on ER stress-mediated apoptosis in a trinitrobenzene sulfonic acid (TNBS) induced experimental IBD model. Study Design: In vivo animal experimental study. Methods: To demonstrate the effect of quercetin in an experimental colitis model, Control, TNBS, and TNBS+quercetin groups were created with 24 Wistar Albino rats. Colitis was induced by intrarectal administration of 25 mg TNBS. In the TNBS+quercetin group, intragastrically 100 mg/kg quercetin was given for 7 days, immediately after colitis induction. In the TNBS-induced experimental IBD model, we evaluated the effects of quercetin on colonic epithelial cell apoptosis, oxidative stress, ER stress, the mitogen-activated protein kinase c-Jun N-terminal kinase, and the nuclear factor kappa B immunoreactivities, the levels of myeloperoxidase and tumor necrosis factor-α, the disease activity index with colonic histopathologic changes. Results: TNBS administration induced an elevated level of disease activity and oxidative stress indices, inflammation markers, and an increase in the immunoreactivities of nuclear factor kappa B and the mitogen-activated protein kinase c-Jun N-terminal kinase in the colon of the colitis group. Glucose regulatory protein 78, caspase-12 immunoreactivities, and epithelial cell apoptosis also were shown in the colon. However, quercetin improved TNBS-induced histopathological alterations, apoptosis, inflammation, oxidative stress, and ER stress. Conclusion: This study suggests that quercetin has a regulatory effect on ER stress-mediated apoptosis, and thus may be beneficial in treating IBD.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Ratos , Animais , Quercetina/efeitos adversos , NF-kappa B , Ácido Trinitrobenzenossulfônico/efeitos adversos , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/metabolismo , Doenças Inflamatórias Intestinais/induzido quimicamente , Doenças Inflamatórias Intestinais/metabolismo , Ratos Wistar , Inflamação , Apoptose , Trinitrobenzenos/farmacologia , Proteínas Quinases Ativadas por Mitógeno/farmacologia , Proteínas Quinases JNK Ativadas por Mitógeno/farmacologia
3.
Int J Biol Macromol ; 258(Pt 2): 129043, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38158054

RESUMO

Pharmacological treatments for colitis have limited efficacy and side effects. Plant polysaccharides improve colitis by modulating the gut microbiota. However, the specific benefits of Phyllanthus emblica L. polysaccharides (PEPs) in colitis remain unclear. Therefore, this study aimed to assess the physical characteristics and health advantages of PEP in rats subjected to 2,4,6-trinitrobenzene sulfonic acid (TNBS) treatment. The results showed that PEP (1.226 × 103 kDa) was an α-acidic pyran heteropolysaccharide rich in galactose and galacturonic acid. Prefeeding rats with PEP significantly decreased the levels of NO, MDA, proinflammatory cytokines (IL-6, IL-1ß, TNF-α), apoptosis, and the activities of mucinase and ß-glucuronidase. These changes were accompanied by increases in the levels of anti-inflammatory cytokines (IL-4, IL-10) and antioxidant enzymes (SOD, catalase, GPx) in colitis rats. Mechanistically, PEP suppressed the abundance of inflammatory-related bacteria (Bacteroides, Intestinimonas, and Parabacteroides) while promoting the growth of short-chain fatty acid (SCFA)-producing bacteria (Romboutsia, Clostridium_sensu_stricto_1, and Lactobacillus), along with an increase in SCFA secretion. SCFAs may engage with the GPR43 receptor and inhibit downstream HDAC3, consequently downregulating the activation of the RAGE/NF-κB and MAPK pathways. In conclusion, PEP demonstrated preventive effects through its antioxidant, anti-inflammatory, and microbiota modulation properties, thereby ameliorating TNBS-induced colitis in rats.


Assuntos
Colite , Microbioma Gastrointestinal , Phyllanthus emblica , Ratos , Animais , NF-kappa B/metabolismo , Phyllanthus emblica/metabolismo , Antioxidantes/farmacologia , Colite/tratamento farmacológico , Transdução de Sinais , Citocinas/metabolismo , Polissacarídeos/farmacologia , Anti-Inflamatórios/farmacologia , Ácido Trinitrobenzenossulfônico/efeitos adversos , Ácido Trinitrobenzenossulfônico/metabolismo , Colo/metabolismo
4.
J Pharmacol Sci ; 154(1): 18-29, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38081680

RESUMO

Crohn's disease, a chronic and recurrent gastrointestinal disease, frequently causes intestinal fibrosis. Transient receptor potential melastatin 2 (TRPM2), a non-selective cation channel, is activated by reactive oxygen species. This study investigated the role of TRPM2 in acute colitis and chronic colitis-associated fibrosis progression. Acute colitis and chronic colitis-associated fibrosis were induced in TRPM2-deficient (TRPM2KO) and wild-type (WT) mice through single and repeated intrarectal injections of 2,4,6-trinitrobenzene sulfonic acid (TNBS). Bone marrow-derived macrophages (BMDMs) from WT and TRPM2KO mice were stimulated using H2O2. In WT mice, a single TNBS injection induced acute colitis with upregulated inflammatory cytokines/chemokines and Th1/Th17-related cytokines, while repeated TNBS injections induced chronic colitis-associated fibrosis with upregulation of fibrogenic factors and Th2-related cytokines. Acute colitis and chronic colitis-associated fibrosis with cytokines/chemokine upregulation and fibrogenic factors were considerably suppressed in TRPM2KO mice. Treating BMDMs with H2O2 increased cytokine/chemokine expression and JNK, ERK, and p38 phosphorylation; however, these responses were significantly less in TRPM2KO than in WT mice. These findings suggest that TRPM2 contributes to acute colitis progression via Th1/Th17-mediated immune responses. Furthermore, TRPM2 may be directly involved in colitis-associated fibrosis induction, likely due to the regulation of Th2/TGF-ß1-mediated fibrogenesis in addition to a consequence of acute colitis progression.


Assuntos
Colite , Canais de Cátion TRPM , Camundongos , Animais , Colo/metabolismo , Canais de Cátion TRPM/genética , Peróxido de Hidrogênio/metabolismo , Ácido Trinitrobenzenossulfônico/efeitos adversos , Ácido Trinitrobenzenossulfônico/metabolismo , Colite/induzido quimicamente , Colite/complicações , Colite/genética , Citocinas/metabolismo , Trinitrobenzenos/metabolismo , Quimiocinas/efeitos adversos , Quimiocinas/metabolismo , Fibrose , Modelos Animais de Doenças
5.
BMC Complement Med Ther ; 23(1): 424, 2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38001450

RESUMO

BACKGROUND: Ulcerative colitis (UC) is a persistent and non-specific inflammatory condition that mainly affects the bowels and has challenging treatment. UC has a growing incidence and significantly affects the well-being of patients. Many medications used to treat UC can disrupt the metabolism and immune system homeostasis, frequently leading to significant adverse effects. Hence, exploring alternative therapies, such as traditional Chinese medicine and probiotics, has recently emerged as a primary research hotspot owing to their safety. Although the therapeutic mechanism of Shaoyao decoction has not been clarified, it has demonstrated a beneficial clinical effect on UC. AIM: This study aimed to assess the effect of Shaoyao decoction on a rat model of UC and investigate its underlying mechanisms. METHODS: The rat model of UC was induced by 2,4,6-trinitrobenzenesulfonic acid (TNBS). The extent of damage to the intestines was assessed using the disease activity index (DAI), colonic mucosa damage index (CMDI), and histological scores. Immunohistochemistry was employed to detect the tissue levels of interleukin (IL)-17, transforming growth factor (TGF)-ß1, and IL-10. Additionally, the proportion of Th17 and Treg cells was detected using flow cytometry. In colon tissue, the levels of forkhead box (Fox)p3, RAR-related orphan receptor (ROR)γt, IL-6, p-STAT3, and STAT3 proteins were quantified by Western blotting. RESULTS: Treatment with Shaoyao decoction enhanced the overall health of rats and reduced colonic damage. Additionally, Shaoyao decoction significantly alleviated the severity of DAI, CMDI, and HS. The proportion of Th17 cells was reduced, and the proportion of Treg cells was increased by Shaoyao decoction. The expression of IL-17 and RORγt was suppressed by Shaoyao decoction, while the expression of IL-10, TGF-ß1, and Foxp3 was increased. The expression of IL-6, p-STAT3, and STAT3 was decreased by Shaoyao decoction. CONCLUSION: The Shaoyao decoction alleviates the symptoms of TNBS-induced UC by decreasing inflammation and mitigating intestinal damage while preserving the balance between Th17 and Treg. Shaoyao decoction modulates the IL-6/STAT3 axis, thereby regulating the balance between Th17 and Treg cells.


Assuntos
Colite Ulcerativa , Humanos , Ratos , Animais , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Interleucina-10 , Linfócitos T Reguladores , Ácido Trinitrobenzenossulfônico/efeitos adversos , Interleucina-6 , Células Th17 , Inflamação , Homeostase
6.
Life Sci ; 334: 122189, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37865178

RESUMO

AIMS: Human umbilical cord mesenchymal stem cells (HUMSCs) have been documented to be effective for several immune disorders including inflammatory bowel diseases (IBD). However, it remains unclear how HUMSCs function in regulating immune responses and intestinal flora in the trinitrobenzene sulfonic acid (TNBS)-induced IBD model. MATERIALS AND METHODS: We assessed the regulatory effects of HUMSCs on the gut microbiota, T lymphocyte subpopulations and related immune cytokines in the TNBS-induced IBD model. The mice were divided into the normal, TNBS, and HUMSC-treated groups. The effect of HUMSCs was evaluated by Hematoxylin and Eosin (H&E) staining, fluorescence-activated cell sorting (FACS), and enzyme-linked immunosorbent assay (ELISA) analyses. Metagenomics Illumina sequencing was conducted for fecal samples. KEY FINDINGS: We demonstrated that the disease symptoms and pathological changes in the colon tissues of TNBS-induced colitis mice were dramatically ameliorated by HUMSCs, which improved the gut microbiota and rebalanced the immune system, increasing the abundance of healthy bacteria (such as Lactobacillus murinus and Lactobacillus johnsonii), the Firmicutes/Bacteroidetes ratio, and the proportion of Tregs; the Th1/Th17 ratio was decreased. Consistently, the expression levels of IFN-γ and IL-17 were significantly decreased, and transforming growth factor-ß1 (TGF-ß1) levels were significantly increased in the plasma of colitis mice HUMSC injection. SIGNIFICANCE: Our experiment revealed that HUMSCs mitigate acute colitis by regulating the rebalance of Th1/Th17/Treg cells and related cytokines and remodeling the gut microbiota, providing potential future therapeutic targets in IBD.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Células-Tronco Mesenquimais , Humanos , Camundongos , Animais , Ácido Trinitrobenzenossulfônico/toxicidade , Colite/induzido quimicamente , Colite/terapia , Citocinas/metabolismo , Doenças Inflamatórias Intestinais/induzido quimicamente , Doenças Inflamatórias Intestinais/terapia , Linfócitos T Reguladores , Imunidade , Células-Tronco Mesenquimais/metabolismo , Cordão Umbilical/metabolismo , Modelos Animais de Doenças
7.
J Transl Med ; 21(1): 554, 2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37592304

RESUMO

BACKGROUND & AIMS: Intestinal fibrosis is a common and severe complication of inflammatory bowel disease without clear pathogenesis. Abnormal expression of host genes and metabolic perturbations might associate with the onset of intestinal fibrosis. In this study, we aimed to investigate the relationship between the development of intestinal fibrosis and the dynamic alterations in both fecal metabolites and host gene expression. METHODS: We induced intestinal fibrosis in a murine model using 2,4,6-trinitrobenzene sulfonic acid (TNBS). TNBS-treated or control mice were sacrificed after 4 and 6 weeks of intervention; alterations in colonic genes and fecal metabolites were determined by transcriptomics and metabolomics, respectively. Differential, tendency, enrichment, and correlation analyses were performed to assess the relationship between host genes and fecal metabolites. RESULTS: RNA-sequencing analysis revealed that 679 differential genes with enduring changes were mainly enriched in immune response-related signaling pathways and metabolism-related biological processes. Among them, 15 lipid metabolism-related genes were closely related to the development of intestinal fibrosis. Moreover, the fecal metabolic profile was significantly altered during intestinal fibrosis development, especially the lipid metabolites. Particularly, dynamic perturbations in lipids were strongly associated with alterations in lipid metabolism-related genes expression. Additionally, six dynamically altered metabolites might serve as biomarkers to identify colitis-related intestinal fibrosis in the murine model. CONCLUSIONS: Intestinal fibrosis in colitis mice might be related to dynamic changes in gene expression and metabolites. These findings could provide new insights into the pathogenesis of intestinal fibrosis.


Assuntos
Colite , Transcriptoma , Animais , Camundongos , Modelos Animais de Doenças , Transcriptoma/genética , Metabolômica , Colite/induzido quimicamente , Colite/genética , Ácido Trinitrobenzenossulfônico
8.
Eur J Gastroenterol Hepatol ; 35(8): 854-864, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37395238

RESUMO

OBJECTIVE: This study aimed to investigate the effect of oleracein E (OE) in improving 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced ulcerative colitis (UC). METHODS: Lipopolysaccharide (LPS) was used to induce a UC cell model, and TNBS was used to induce a UC rat model. ELISA was performed to assess the levels of inflammatory factors (IL-1ß, TNF-α, and IL-6). Moreover, the activities of catalase (CAT), myeloperoxidase (MPO), and malonaldehyde (MDA) were detected by kits. Western blotting was performed to assess related proteins of the Nrf2/HO-1 signaling pathway, tight junction protein (ZO-1, Occludin, and claudin-2) expression levels, and apoptosis-related proteins (Bcl2, Bax, and cleaved caspase 3). Flow cytometry was used to analyze ROS levels. The morphology of colon tissues and the apoptosis of cells were detected by HE and TUNEL staining, respectively. RESULTS: OE significantly increased the activity of CAT and decreased the activity of MPO in LPS-induced Caco-2 cells and TNBS-induced UC rats. However, the levels of IL-1ß, IL-6, and TNF-α were markedly reduced both in vivo and in vitro. In addition, OE significantly increased the levels of Nrf2/HO-1 signaling pathway-related proteins and tight junction proteins and inhibited cell apoptosis. HE staining showed that OE significantly decreased the severity of acute TNBS-induced colitis in rats. CONCLUSION: OE may exert a regulatory effect on ameliorating intestinal barrier injury and reducing inflammation and oxidative stress levels by activating the Nrf2/HO-1 pathway.


Assuntos
Colite Ulcerativa , Colite , Ratos , Humanos , Animais , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/metabolismo , Fator de Necrose Tumoral alfa , Interleucina-6 , Ácido Trinitrobenzenossulfônico/toxicidade , Células CACO-2 , Lipopolissacarídeos , Fator 2 Relacionado a NF-E2
9.
J Microbiol Biotechnol ; 33(8): 1057-1065, 2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37280778

RESUMO

Inflammatory bowel disease (IBD), a chronic inflammatory disease, results from dysregulation of the immune responses. Some lactic acid bacteria (LAB), including Lactobacillus, alleviate IBD through immunomodulation. In this study, the anti-colitis effect of LAB isolated from human breast milk was investigated in a mouse model induced acute colitis with 2,4,6-trinitrobenzene sulfonic acid (TNBS). TNBS remarkably increased weight loss, colon shortening, and colonic mucosal proliferation, as well as the expression levels of inflammatory cytokines, including tumor necrosis factor-alpha (TNF-α) and interleukin (IL)-1ß. Oral administration of LAB isolated from human breast milk resulted in a reduction in TNBS-induced colon shortening, as well as induced cyclooxygenase (COX)-2, nitric oxide synthase (iNOS), nuclear factor-kappa B (NF-κB). In addition, LAB suppressed inflammatory cytokines such as TNF-α, IL-6, and IL-1ß, and thus showed an effect of suppressing the level of inflammation induced by TNBS. Furthermore, LAB alleviated gut microbiota dysbiosis, and inhibited intestinal permeability by increasing the expression of intestinal tight junction protein including ZO-1. Collectively, these results suggest that LAB isolated from human breast milk can be used as a functional food for colitis treatment by regulating NF-κB signaling, gut microbiota and increasing expression of intestinal tight junction protein.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Lactobacillales , Feminino , Humanos , Camundongos , Animais , NF-kappa B/metabolismo , Ácido Trinitrobenzenossulfônico , Fator de Necrose Tumoral alfa/metabolismo , Lactobacillales/metabolismo , Leite Humano , Colite/induzido quimicamente , Colite/patologia , Colo/patologia , Citocinas/metabolismo , Ciclo-Oxigenase 2/metabolismo , Proteínas de Junções Íntimas/metabolismo
10.
J Exp Med ; 220(8)2023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-37163450

RESUMO

Group 2 innate lymphoid cells (ILC2s) expressing IL-5 and IL-13 are localized at various mucosal tissues and play critical roles in the induction of type 2 inflammation, response to helminth infection, and tissue repair. Here, we reveal a unique ILC2 subset in the mouse intestine that constitutively expresses IL-4 together with GATA3, ST2, KLRG1, IL-17RB, and IL-5. In this subset, IL-4 expression is regulated by mechanisms similar to but distinct from those observed in T cells and is partly affected by IL-25 signaling. Although the absence of the microbiota had marginal effects, feeding mice with a vitamin B1-deficient diet compromised the number of intestinal IL-4+ ILC2s. The decrease in the number of IL-4+ ILC2s caused by the vitamin B1 deficiency was accompanied by a reduction in IL-25-producing tuft cells. Our findings reveal that dietary vitamin B1 plays a critical role in maintaining interaction between tuft cells and IL-4+ ILC2s, a previously uncharacterized immune cell population that may contribute to maintaining intestinal homeostasis.


Assuntos
Dieta , Mucosa Intestinal , Tiamina , Animais , Camundongos , Mucosa Intestinal/citologia , Mucosa Intestinal/imunologia , Tiamina/metabolismo , Organismos Livres de Patógenos Específicos , Camundongos Endogâmicos C57BL , Interleucina-4/metabolismo , Microbioma Gastrointestinal , Organoides/citologia , Organoides/imunologia , Ácido Trinitrobenzenossulfônico
11.
Phytomedicine ; 116: 154899, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37247589

RESUMO

BACKGROUND: Ulcerative colitis (UC) is a chronic, unspecific inflammatory bowel disorder lacking effective therapeutic targets and radical drugs. Oxyberberine (OBB), a novel intestinal flora-elicited oxidative metabolite of berberine (BBR), has been revealed to exhibit diverse pharmacological properties. PURPOSE: In this follow-up study, we attempted to shed light on the possible therapeutic effect and latent mechanism of OBB on 2, 4, 6-trinitrobenzenesulfonic acid (TNBS)-evoked UC in rats. METHODS: UC rats were established via a gentle enema of TNBS. Rats were sacrificed after intragastric administration of drugs for seven days. The weight reduction, disease activity index, macroscopic and histological colonic alterations were assessed. Further investigation on molecular mechanisms was conducted by ELISA, qRT-PCR, immunohistochemistry, or Western blot. RESULTS: OBB treatment remarkably decreased the weight loss, macroscopic scores, and colonal weight/length ratio, as well as mitigated the colonic pathological deterioration and MPO vitality in colitis rats, achieving a superior protective effect to BBR. Additionally, OBB modulated the disequilibrium between pro- and anti-inflammatory factors by promoting the production of IL-13 and IL-4, and lowering the contents of TNF-α, IL-2, IL-8, and IL-22. Furthermore, OBB pretreatment dramatically ameliorated oxidative stress via enhancing antioxidant defense genes expressions (including HO-1, GCLM, GCLC, and NQO-1), thereby increasing SOD and GSH, and decreasing MDA and ROS activities. Furthermore, OBB strikingly restrained the translocation of NF-κB p65 and phosphorylation of IκBα, promoted HO-1 expression, Keap1 degradation and Nrf2 nuclear translocation. CONCLUSION: The study firstly indicated that OBB had a superior therapeutic effect than BBR against TNBS-elicited colitis in rats. The protective effect of OBB might be closely related to the modulation of Keap1/Nrf2/NF-κB-mediated inflammatory response and oxidant stress. The evidences highlight the potentiality of OBB as a prospective candidate for the amelioration of colitis.


Assuntos
Colite Ulcerativa , Colite , Ratos , Animais , NF-kappa B/metabolismo , Ácido Trinitrobenzenossulfônico/efeitos adversos , Fator 2 Relacionado a NF-E2/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Seguimentos , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/metabolismo , Inflamação/tratamento farmacológico , Transdução de Sinais , Colite Ulcerativa/tratamento farmacológico , Estresse Oxidativo
12.
Nan Fang Yi Ke Da Xue Xue Bao ; 43(3): 474-482, 2023 Mar 20.
Artigo em Chinês | MEDLINE | ID: mdl-37087594

RESUMO

OBJECTIVE: To investigate the therapeutic mechanism of diosmetin on 2, 4, 6-trinitrobenzene sulfonic acid (TNBS)-induced Crohn's disease (CD)-like colitis in mice. METHODS: Wild-type C57BL/6 mice were randomized into control group, TNBS-induced CD-like colitis group (TNBS group) and 50 mg·kg-1·d-1 diosmetin-treated group (n=8). Disease activity (DAI) scores, body weight changes, histological scores, colon lengths and colon mucosal levels of TNF-α, IFN-γ, and IL-17A were measured to evaluate the severity of colitis. The changes of T lymphocyte subsets (Th1/Th2 and Th17/Treg) in the mesenteric lymph nodes were analyzed by flow cytometry. Network pharmacology and molecular docking were used to analyze the effect of diosmetin on PI3K/AKT pathway. RESULTS: Compared with TNBS group, diosmetin treatment significantly lowered DAI scores, histological scores, body weight loss and colon mucosal levels of TNF-α, IFN-γ, and IL-17A (P < 0.05) and increased the colon length of the rat models, but these improvements did not reach the control levels (P < 0.05). Diosmetin significantly lowered the percentages of Th1/Th17 cells in the mesenteric lymph nodes in TNBS-treated mice, which remained higher than the control levels (P < 0.05); The percentages of Th2/Treg cells were significantly higher in diosmetin group than in TNBS group (P < 0.05) and the control group (P < 0.05). Network pharmacologic analysis identified 46 intersection targets of diosmetin and CD, and among them AKT1, EGFR, SRC, ESR1, MMP9 and PTGS2 were the top 6 core targets. GO and KEGG analyses showed that the PI3K/AKT signaling pathway was closely related with the therapeutic effect of diosmetin on CD-like colitis. Molecular docking suggested strong binding of diosmetin to the key core targets. Diosmetin significantly reduced the levels of p-PI3K and p-AKT in the colon mucosa in TNBS-treated mice (P < 0.05), but their levels remained higher than those in the control group (P < 0.05). CONCLUSION: Diosmetin ameliorates TNBS-induced CDPlike colitis in mice possibly by regulating Th1/Th2 and Th17/Treg balance to improve intestinal immune disorder through inhibition of PI3K/AKT signaling.


Assuntos
Colite , Flavonoides , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Animais , Camundongos , Ratos , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colo/metabolismo , Doença de Crohn/tratamento farmacológico , Citocinas/metabolismo , Modelos Animais de Doenças , Interleucina-17/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Simulação de Acoplamento Molecular , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Ácido Trinitrobenzenossulfônico/efeitos adversos , Ácido Trinitrobenzenossulfônico/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Flavonoides/farmacologia , Intestinos/imunologia
13.
Molecules ; 28(7)2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-37049797

RESUMO

Given that one of the crucial events in the pathogenesis of inflammatory bowel disease is the loss of homeostasis between Th17 and Treg cells, targeting the specific molecules of the Th17/Treg axis developmental pathway is a promising strategy for inflammatory bowel disease prevention and treatment. The current study aimed to assess the impact of cornelian cherry (Cornus mas L.) extract, rich in iridoids and polyphenols known for their potential anti-inflammatory activity, at two doses (20 or 100 mg/kg) on the crucial factors for Th17/Treg cell differentiation in the course of experimental colitis and compare this action with that of sulfasalazine. This study was conducted on the biobank colon tissue samples collected during the previous original experiment, in which colitis in rats was induced by trinitrobenzenesulfonic acid (TNBS). The levels of IL-6, RORγt, total STAT3, p-STAT3, and Foxp3 were determined by ELISA. The expression of PIAS3 mRNA was quantified by qPCR. Cornelian cherry extract at a dose of 100 mg/kg counteracted the TNBS-induced elevation of IL-6, RORγt, and p-STAT3 levels and a decrease in Foxp3 level and PIAS3 mRNA expression, while given concomitantly with sulfasalazine was more effective than sulfasalazine alone in reversing the TNBS-induced changes in IL-6, RORγt, total STAT3, p-STAT3, Foxp3 levels, and PIAS3 mRNA expression. The beneficial effect of cornelian cherry extract on experimental colitis may be due to its immunomodulatory activity reflected by the influence on factors regulating the Th17/Treg axis.


Assuntos
Colite , Cornus , Doenças Inflamatórias Intestinais , Ratos , Animais , Linfócitos T Reguladores , Ácido Trinitrobenzenossulfônico/efeitos adversos , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Interleucina-6/farmacologia , Sulfassalazina/farmacologia , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/metabolismo , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Células Th17 , Modelos Animais de Doenças
14.
Int J Mol Sci ; 24(7)2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-37047397

RESUMO

The lack of knowledge regarding the pathogenesis of IBD is a challenge for the development of more effective and safer therapies. Although in vivo preclinical approaches are critical for drug testing, none of the existing models accurately reproduce human IBD. Factors that influence the intra-individual response to drugs have barely been described. With this in mind, our aim was to compare the anti-inflammatory efficacy of a new molecule (MTADV) to that of corticosteroids in TNBS and DSS-induced colitis mice of both sexes in order to clarify further the response mechanism involved and the variability between sexes. The drugs were administered preventively and therapeutically, and real-time bioluminescence was performed for the in vivo time-course colitis monitoring. Morphometric data were also collected, and colonic cytokines and acute plasma phase proteins were analyzed by qRT-PCR and ELISA, respectively-bioluminescence images correlated with inflammatory markers. In the TNBS model, dexamethasone worked better in females, while MTADV improved inflammation in males. In DSS-colitis, both therapies worked similarly. Based on the molecular profiles, interaction networks were constructed to pinpoint the drivers of therapeutic response that were highly dependent on the sex. In conclusion, our results suggest the importance of considering sex in IBD preclinical drug screening.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Humanos , Masculino , Feminino , Camundongos , Animais , Sulfato de Dextrana/efeitos adversos , Modelos Animais de Doenças , Ácido Trinitrobenzenossulfônico/efeitos adversos , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/patologia , Doenças Inflamatórias Intestinais/patologia
15.
J Ethnopharmacol ; 307: 116221, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-36754188

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Echinacea purpurea (L.) Moench (EP) is a perennial herbaceous flowering plant, commonly known as purple conical flower. It was widely used to treat skin inflammation and gastrointestinal diseases. AIM OF STUDY: Ulcerative colitis (UC) is a chronic and nonspecific inflammatory disease. Recent evidence shows that immune disorders are involved in the pathogenesis of UC. To evaluate the protective effect of Echinacea purpurea (L.) Moench exact (EE) on UC and explore the role of complement system in the treatment of UC. MATERIALS AND METHODS: UC model was induced in rats by 2,4,6-trinitrobenzene sulfonic acid (TNBS), and then rats were administered with EE for 10 days. Collect colon tissues for analysis of relevant mechanisms. RESULTS: EE could reduce the weight loss and diarrhea of UC rats. In addition, EE could improve the integrity of intestinal epithelial barrier in UC rats. EE inhibited the level of proinflammatory cytokines and promoted the antioxidation. Furthermore, EE suppressed the expression of C3aR, CFB, CD55, TLR4 and NLRP3. CONCLUSION: These results indicate that EE may achieve therapeutic effect by inhibiting C3a/C3aR signal pathway, suggesting that EE may be used as a medicinal plant to alleviate UC.


Assuntos
Colite Ulcerativa , Echinacea , Animais , Ratos , Colite Ulcerativa/tratamento farmacológico , Colo , Inflamação/patologia , Transdução de Sinais , Ácido Trinitrobenzenossulfônico , Complemento C3a/metabolismo
16.
Life Sci ; 318: 121501, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36801213

RESUMO

AIMS: Taurohyodeoxycholic acid (THDCA), a natural 6α-hydroxylated bile acid, exhibits intestinal anti-inflammatory effects. This study aimed to explore the efficacy of THDCA on ulcerative colitis and to reveal its mechanisms of action. MAIN METHODS: Colitis was induced by intrarectal administration of trinitrobenzene sulfonic acid (TNBS) to mice. Mice in the treatment group were gavage THDCA (20, 40, and 80 mg/kg/day) or sulfasalazine (500 mg/kg/day) or azathioprine (10 mg/kg/day). The pathologic markers of colitis were comprehensively assessed. The levels of Th1-/Th2-/Th17-/Treg-related inflammatory cytokines and transcription factors were detected by ELISA, RT-PCR, and Western blotting. The balance of Th1/Th2 and Th17/Treg cells was analyzed by Flow cytometry. KEY FINDINGS: THDCA significantly alleviated colitis by improving the body weight, colon length, spleen weight, histological characteristics, and MPO activity of colitis mice. THDCA reduced the secretion of Th1-/Th17-related cytokines (IFN-γ, IL-12p70, IL-6, IL-17A, IL-21, IL-22, and TNF-α) and the expressions of transcription factors (T-bet, STAT4, RORγt, and STAT3), but increase the production of Th2-/Treg-related cytokines (IL-4, IL-10, and TGF-ß1) and the expressions of transcription factors (GATA3, STAT6, Foxp3, and Smad3) in the colon. Meanwhile, THDCA inhibited the expressions of IFN-γ, IL-17A, T-bet, and RORγt, but improved the expression of IL-4, IL-10, GATA3, and Foxp3 in the spleen. Furthermore, THDCA restored the proportion of Th1, Th2, Th17, and Treg cells, and balanced the Th1/Th2 and Th17/Treg immune response of colitis mice. SIGNIFICANCE: THDCA can alleviate TNBS-induced colitis via regulating Th1/Th2 and Th17/Treg balance, which may represent a promising treatment for patients with colitis.


Assuntos
Colite Ulcerativa , Colite , Camundongos , Animais , Colite Ulcerativa/patologia , Linfócitos T Reguladores , Interleucina-17 , Interleucina-10 , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares , Ácido Trinitrobenzenossulfônico , Interleucina-4/farmacologia , Colite/induzido quimicamente , Citocinas/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Células Th17
17.
Food Funct ; 14(4): 2188-2199, 2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36756938

RESUMO

Soluble oat fibers, including ß-glucan, have been shown to alter the gut microbiome composition and ameliorate DSS-induced colitis; however, the beneficial effect of soluble oat fiber on colonic inflammation is not yet fully understood. In this study, we demonstrated that soluble oat fibers ameliorate T cell-dependent colitis through the induction of peripherally induced regulatory T cells (pTregs). Soluble oat fibers elevated colonic butyrate production dose-dependently, which coincided with the overrepresentation of Faecalibaculum rodentium (an analog of butyrate-producing Holdemanella biformis) in the gut microbiome. Soluble oat fibers promoted the growth of F. rodentium and H. biformis even in vitro, and increased the concentration of butyrate in the culture supernatant. These results indicate that soluble oat fibers are an energy source for butyrate-producing bacteria and are a fermentation substrate. Soluble oat fibers increased the percentage of colonic pTregs and ameliorated the weight loss and inflammation in acute 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced colitis; this may in part be mediated by the increase in IL-10-producing T cells. In conclusion, our results suggest that the administration of soluble oat fibers is a promising prebiotic treatment for the prevention of colitis mediated via altered gut microbiota composition and elevated butyrate production.


Assuntos
Avena , Colite , Animais , Ácido Trinitrobenzenossulfônico , Avena/química , Colite/microbiologia , Butiratos , Inflamação , Modelos Animais de Doenças
18.
J Ethnopharmacol ; 309: 116301, 2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-36842724

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Yiyi Fuzi Baijiang formula (YFB) is a traditional Chinese medicine prescription composed of Coix seed, Radix Aconiti Lateralis and Patrinia villosa, which has been used to treat ulcerative colitis (UC) for thousands of years. AIM OF THE STUDY: To investigate the therapeutic effect and metabolic analysis of YFB formula on UC in rats induced by 2,4,6-trinitro-benzene sulfonic acid (TNBS). MATERIALS AND METHODS: Six main alkaloids in the YFB formula were determined by UPLC‒MS/MS. The rat UC model was induced by TNBS, and the therapeutic effect of YFB formula on UC was evaluated by disease activity index (DAI) score and hematoxylin-eosin (HE) staining. UPLC-QTRAP-MS metabolomics technology was used to screen potential biomarkers for YFB treatment of UC in combination with multivariate data statistics and further analyze related metabolic pathways. Western blotting was used to detect the protein levels of NLRP1, NLRP3, NLRC4, ASC, pro-caspase1 and Caspase-1 in rat liver tissues. ELISA and immunohistochemistry were used to detect the contents of interleukin (IL)-17A, IL-21, IL-22, IL-6, TNF-α, IL-1ß and IL-18 in rat serum and liver tissues. RESULTS: The DAI scores of the YFB groups were significantly reduced, and colon tissue injury was significantly improved (p < 0.01). The results of metabolomics analysis revealed 29 potential biomarkers in serum and 27 potential biomarkers in liver. YFB formula can treat UC by affecting glycerophospholipid metabolism, primary bile acid biosynthesis, glyoxylic acid and dicarboxylic acid metabolism, and arginine and proline metabolism. Compared with the model group, the contents of IL-17A, IL-21, IL-22, IL-6, TNF-α, IL-1ß and IL-18 in the YFB groups were decreased in a dose-dependent manner (p < 0.01). Compared with those in the model group, the protein levels of NLRP1, NLRP3, NLRC4, ASC, pro-caspase1 and Caspase-1 in the YFB groups were significantly decreased in a dose-dependent manner (p < 0.01). CONCLUSIONS: The therapeutic effect of YFB formula on UC rats was dose dependent, and the effect of the YFB (2.046 g/kg) group was close to that of the positive group. YFB formula has an anti-inflammatory effect on UC by regulating the balance of Th17/Treg cells in rats.


Assuntos
Colite Ulcerativa , Ratos , Animais , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Interleucina-18/efeitos adversos , Interleucina-6 , Fator de Necrose Tumoral alfa/farmacologia , Linfócitos T Reguladores , Ácido Trinitrobenzenossulfônico/toxicidade , Cromatografia Líquida , Proteína 3 que Contém Domínio de Pirina da Família NLR , Espectrometria de Massas em Tandem , Colo , Biomarcadores , Caspases , Modelos Animais de Doenças
19.
Int Immunopharmacol ; 115: 109645, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36610329

RESUMO

Inflammatory bowel disease (IBD) have a complex pathogenesis that is yet to be completely understood. However, a strong correlation between Toll-like receptor 4 (TLR4)/nuclear factor-κB (NF-κB) signaling and IBD has been observed. T-cell immunoglobulin and mucin domain-containing-3 (Tim-3) has been reported to regulate TLR4/NF-κB by interacting with Galectin-9 (Gal-9), and recombinant Gal-9 can activate Tim-3; however, its potential properties in IBD and the underlying mechanism remain unclear. This study aimed to determine how Gal-9 affects experimental colitis in mice. Dextran sodium sulfate (DSS) and 2,4,6-trinitrobenzene sulfonic acid (TNBS) were used to establish colitis in mice, and the severity of the illness was assessed based on body weight, colon length, and histology. Therefore, we explored the effects of Gal-9 treatment on colitis. Furthermore, we analyzed the effect of Gal-9 on the expression of Tim-3 and TLR4/NF-κB pathway in colonic tissues and the serum levels of interferon-gamma (IFN-γ), interleukin (IL)-1ß, and IL-6. Tim-3 expression in the colon was notably decreased in mice with TNBS-induced colitis, whereas TLR4/NF-kB expression was significantly increased. Intraperitoneal injection of Gal-9 dramatically decreased the disease activity index and attenuated the level of intestinal mucosal inflammation in TNBS-induced colitis mice (p < 0.05). Intraperitoneal administration of Gal-9 significantly increased Tim-3 expression in the colon and decreased the serum concentrations of IFN-γ, IL-1ß, and IL-6. Additionally, Gal-9 treatment significantly downregulated the expression of TLR4 signaling pathway-related proteins. In contrast, Gal-9 did not reduce the severity of DSS-induced colitis. In summary, exogenous Gal-9 increased Tim-3 expression, inhibited the TLR4/NF-κB pathway, and alleviated TNBS-induced colitis in mice but not DSS-induced colitis in mice, revealing its potential therapeutic ramifications for IBD.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Camundongos , Animais , NF-kappa B/metabolismo , Receptor 4 Toll-Like/metabolismo , Interleucina-6/uso terapêutico , Receptor Celular 2 do Vírus da Hepatite A , Ácido Trinitrobenzenossulfônico , Ligantes , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/metabolismo , Galectinas/uso terapêutico , Sulfato de Dextrana , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL
20.
Oxid Med Cell Longev ; 2023: 4463063, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36713031

RESUMO

Visceral pain caused by inflammatory bowel disease (IBD) greatly diminishes the quality of life in affected patients. Yet, the mechanism of how IBD causes visceral pain is currently not fully understood. Previous studies have suggested that the central nervous system (CNS) and gut-brain axis (GBA) play an important role in IBD-inducing visceral pain. As one of the treatments for IBD, electroacupuncture (EA) has been used to treat various types of pain and gastrointestinal diseases in clinical practice. However, whether EA relieves the visceral pain of IBD through the gut-brain axis has not been confirmed. To verify the relationship between visceral pain and CNS, the following experiments were conducted. 1H-NMR analysis was performed on the prefrontal cortex (PFC) tissue obtained from IBD rat models to determine the link between the metabolites and their role in EA treatment against visceral pain. Western blot assay was employed for detecting the contents of glutamate transporter excitatory amino acid transporters 2 (EAAT2) and the glutamate receptor N-methyl-D-aspartate (NMDA) to verify whether EA treatment can alleviate neurotoxic symptoms induced by abnormal increases of glutamate. Study results showed that the glutamate content was significantly increased in the PFC of TNBS-induced IBD rats. This change was reversed after EA treatment. This process was associated with increased EAAT2 expression and decreased expression of NMDA receptors in the PFC. In addition, an increase in intestinal glutamic-metabolizing bacteria was observed. In conclusion, this study suggests that EA treatment can relieve visceral pain by reducing glutamine toxicity in the PFC, and serves an alternative clinical utility.


Assuntos
Eletroacupuntura , Doenças Inflamatórias Intestinais , Dor Visceral , Ratos , Animais , Ratos Sprague-Dawley , Dor Visceral/terapia , Dor Visceral/etiologia , Dor Visceral/metabolismo , Eletroacupuntura/métodos , Ácido Trinitrobenzenossulfônico , Qualidade de Vida , Doenças Inflamatórias Intestinais/complicações , Córtex Pré-Frontal/metabolismo , Glutamatos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...